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High-Frequency Reciprocity Based Circuit
Model for the Incidence of Electromagnetic
Waves on General Circuits in Layered Media

Frank Olyslager, Member, IEEE

Abstract— Traditionally a circuit on a high-speed multichip
module (MM) or a microwave monolithic integrated circuit
(MMIC) is represented in an equivalent circait by S-parameters
for the different components, such as filters or bends, and
by transmission lines for the interconnections between the
components. Nowadays the S-parameters of the compeonents
are easily determined by a numerical electromagnetic analysis.
Different components close to each other will interact, often
this interaction is unwanted. In the present contribution we
develop a circuit model for these interactions without having
to perform a global electromagnetic analysis of the interacting
components. These interactions are then represented by discrete
and distributed sources in the equivalent circuit. Qur technique
is based on reciprocity and is focused on the surface wave
interaction which is often the most important one. Each
component is characterized by a surface wave radiation pattern.

[. INTRODUCTION

ULTICHIP modules (MCM's) and microwave mono-

lithic integrated circuits (MMIC’s) typically consist
of metalization patterns embedded in a layered structure.
Certainly for a MCM, and often also for a MMIC, it is not
possible to perform a global electromagnetic simulation that
incorporates all the interactions between the different circuits
on a MCM or MMIC. Modeling large parts of a circuit
at once is very CPU-time consuming and often impractical
because every time the design of the circuit is changed the
modeling has to be repeated. Due to the layered nature of
the substrate the most important interaction between different
separated circuits on the same MCM or MMIC is surface wave
coupling. Our aim is to characterize each circuit by a surface
wave radiation pattern and to represent the interaction of a
surface wave with a circuit by a current and voltage source in
the circuit model of the circuit. In essence we approach the
problem as a transmitter and receiver surface wave antenna
problem.

A typical circuit on a MCM or MMIC consists of in-
terconnections and what we will call components. These
components are everything which deviates from an intercon-
nection structure such as bends. steps in width, filters, active
components, lumped elements, via holes, air bridges, etc..
In a high frequency circuit description the interconnections,
which act as waveguides, are represented by an equivalent
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transmission line model and the components are represented
by their S-parameters. In the past much theoretical effort
has been spent in constructing equivalent transmission line
models for high-frequency interconnections. In [1] a rigorous
equivalent transmission line model has been derived based
on reciprocity considerations. In the same publication the
meaning of the impedance level of the transmission line
model and at the same time the meaning of S-parameters
for connected components has been carefully investigated. In
[2], based on the same equivalent transmission line model
and on the Lorentz reciprocity relation, a circuit model for
the incidence of electromagnetic waves on interconnections
has been investigated. The impinging wave is represented as
distributed current and voltage sources in the transmission line.
Traditionally, components are described by their S-parameters
at the ports where the electromagnetic field is assumed to
be modal. Nowadays electromagnetic field simulators are
available to determine the S-parameters of a very large variety
of components.

Although we will mainly concentrate on surface wave
coupling, it will be shown that other coupling mechanisms
such as space wave coupling can be handled with the same
techniques. Because of their importance and to make the theory
more intelligible we will start with planar perfectly conducting
circuits. Later the generalization to general three dimensional,
not necessary perfectly conducting, objects embedded in lay-
ered media will be discussed. This makes the theory also
applicable to dielectric waveguide circuits.

II. SCHEMATIC REPRESENTATION

To focus our attention let us consider the planar metalization
structure of Fig. 1. The figure shows the top view of the
structure and it is assumed that the metalization is located
inside or on top of a stack of layers which can be backed
with a ground plane. The structure consists of two separated
circuits, indicated with A and B. Each circuit consists of a
number (two in the case of the figure) of interconnections
(hatched regions on the figure) and a component part. The
interconnections, indicated by the subscripts I, 1", ‘1,2, etc.,
provide interaction with the external world, i.e., with other
circuits. In the sequel we will assume two interconnections
for each component but the theory is of course valid for any
number of interconnections. The component part, indicated by
the subscript *C” is an irregular planar metalization pattern,
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Fig. 1.

such as a filter, a step in width or just a bend. The places
where the interconnections are connected to the component
part are called the ports of the component.

Suppose for a moment that only circuit A is present and
that we have modeled this structure with an electromagnetic
simulator. From this simulation we know .the current densities
on the metalization for each excitation of the structure by
a fundamental mode on the interconnections Ay and Aj ;.
It is assumed that the fields along the interconnection parts
Arq and Ay, are monomodal and that other higher order
modes, discrete or continuous, generated in the component
part Ac have died out and are negligible compared to the
fundamental modes at the ports. If this is not the case then
the interconnection part must be reduced and the component
part must be enlarged. From the electromagnetic simulation
we obtain a circuit model for circuit A consisting of two
transmission lines, which represent the interconnections, and
a scattering parameter matrix S 4 which describes the compo-
nent part Ac. It has to be remarked that if the interconnection
propagates more than one fundamental mode (for example
an even and odd mode in two parallel microstrips) or if
also higher order modes are important, for example at higher
frequencies, the interconnections can be represented by a
coupled set of transmission lines. The generalization of the
theory to multimode interconnections is presented in Appendix
A. A similar electromagnetic simulation for the circuit B

Interaction between the component parts of two planar metalization structures and the corresponding representation by discrete sources.

yields the surface current densities on the metalization and
the scattering parameter matrix Sp.

If both circuits are present they will interact. This means
that the whole structure starts to act as a four-port. One
way to characterize this structure is to perform one global
electromagnetic simulation for the whole structure and derive
the 4 X 4 scattering parameter matrix of the structure. This
might still be manageable for the simple structure depicted in
Fig. 1 but this technique is certainly to CPU-time consuming
for a whole MCM. To overcome this problem we will adopt a
different technique to take into account the interaction between
circuit A and B. However, we have to make the assumption
that the effect of the presence of circuit B on circuit A is
negligible when circuit B is not excited at its interconnections.
Clearly this assumption will fail, e.g., if circuit A and B are
parts of the same filter structure which is designed to have
strong interaction between its different parts. However, when
circuit A and B are truly two different structures then the
present method will be able to calculate the electromagnetic
interference between both circuits. For planar structures in
layered media the most important interaction between such
different structures is due to surface waves. These surface
waves are eigenmodes of the layered structure in the absence
of the metalization patterns and they are excited by the current
densities on discontinuities, such as the components Ac and
Be. Except for this surface wave interaction, there is also



distributed  sources.

interaction through space waves. i.e.. through radiation in the
air above the metalization. In this case A and B¢ act as real
antennas. However, it is often the surface wave interaction
which is dominant because the surface waves decay more
slowly than the space waves as a function of the radial
distance.

Now we will give a schematic overview and circuit rep-
resentation of the interaction between circuits A and B. We
will separate the interaction between structure A and B into
four parts. The first type of interaction together with the
circuit model is shown in Fig. 1. This first type of interaction
takes into account the incidence of electromagnetic waves,
gencrated by the currents of Ax, on B¢ and vice versa.
So if circuit A is excited by a mode along one of its
interconnections, the currents on Ao will generate surface
waves. These surface waves will induce currents on B¢ and
excite the fundamental eigenmodes, which propagate away
from B, in the interconnections By 1 and By ». In the circuit
model this interaction is represented by the current and voltage
sources /g 1.1Ip 2. Vp,1. and Vg o at the ports of structure B
which depend on the currents and voltages i.4.1.:4,2,V4.1
and v,y at the ports of circuit A. Indeed ¢41.7492,v4,1
and v,4 o determine or represent by what amount the eigen-
modes in the interconnections of structure A4 are excited
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Fig. 2. Interaction between the fields generated at the component parts with the interconnection parts of the other structure and representation by

and Ip1,IB2.Vp,1, and Vp o represent the excitation of the
eigenmodes in the ports of structure B. The sources Iz 1 and
Vp,1(Ip2 and Vp o) are designed such that they generate
a wave or mode in the transmission line By ;(Brs) which
propagates away from the component Be. Due to linearity
the sources Ig 1,52, VE 1. and Vg o are linear combinations
of the circuit parameters ¢4 1,£44,2.v4.1, and v.42. The above
reasoning can be repeated when surface waves generated in
B¢ interact with Ac.

Fig. 2 depicts the second type of interaction. The surface
waves generated at A¢ will not only generate eigenmodes in
the interconnections By 1 and By 5 through interaction with the
component part B¢ of circuit B but also directly through in-
teraction with the interconnections By ; and By o themselves.
The interaction of impinging waves on interconnections was
studied in detail in [2]. The circuit equivalent of this type of in-
teraction is also shown in Fig. 2. The interaction is represented
by distributed sources I 1(s) ds, Ip.2(s) ds,Vp 1(s) ds, and
Vi.2(s) ds in the transmission lines which depend on the
currents and voltages ¢4.1,%4,2,v4,1. and v4 o at the ports of
Ac. Here s denotes the distance from the component along the
considered transmission line. Of course by a simple integration
it is possible to concentrate the distributed sources along a
part of a transmission line in a discrete source placed at some
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Fig. 3.

point of that part. This discrete source will have the same
effect outside the considered part of the transmission line as
the distributed sources on that part.

Normally an eigenmode propagating along an infinite in-
terconnection or waveguide does not interact with surface
waves. This is however not true for a finite or semi-infinite
interconnection line. This brings us to a third type of in-
teraction which is the reciprocal of the previous type. The
interconnections A1,1 and Ay, will generate surface waves
which, through interaction with B¢ will generate eigenmodes
in the interconnections By, and By . This situation is shown
in Fig. 3 together with the circuit equivalent. The circuit
equivalent consists of discrete sources Ip1,Ip 32, Vp,1, and
Ve, at the ports of Bc which depend on the currents
and voltages 44,1(s),54,2(8),v4,1(s), and v42(s) of each
elementary part ds of the interconnections Ay; and Ay .
Of course one could again integrate along a part of the
interconnections Ar; or Ays to concentrate the effect of
this part into one contribution. As mentioned, this third type
of interaction is reciprocal to the second type of interaction.
This allows us to draw an interesting conclusion. Since an
eigenmode on an infinite interconnection does not generate
surface waves it is to be expected that for a semi-infinite
interconnection only the part near the end, i.e., near the port
of the interconnection, will generate substantial surface waves.

Interaction between the fields generated at the interconnection parts with the component part of the other structure and representation by discrete sources.

The contribution from parts further away from the port will be
less important. Each part of the semi-infinite transmission line
will generate the same amount of surface waves but for the
parts further away from the port there will be a more and more
destructive interference between the surface waves generated
by different parts. This means that we can restrict ourselves
to the contribution of a small part of A7, and Ay, close to
Ag. And from reciprocity this means that for the second type
of interaction we can restrict ourselves to the contribution of
distributed sources close to Ag or Bg.

From the third type of interaction it is natural to deduce
the fourth type of interaction. The surface waves generated
by the interconnections Ar; and Ay, will also directly
generate eigenmodes in the interconnections By,; and By s.
The circuit model for this type of interaction consists of
distributed sources Ip 1(s) ds,Ip2(s) ds,Vp1(s) ds, and
VB,2(s) ds in the transmission lines which depend on the
currents and voltages i4 1(s),%4.2(s),vp,1(s), and vg o(s) in
each elementary part ds of the interconnections Ay 1 and Ay 5.

Due to the fact that interconnections do not interact very
strongly with surface waves, it is clear that the first type
of interaction is the most important one and the fourth type
of interaction is the least important one. In this paper we
will concentrate on this first type. In essence the third type
of interaction is only a special case of the first type which
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means that with the theory of this paper it is also possible to
calculate this interaction. The second and also the fourth type
of interaction can be calculated with the theory of [2].

III. THE EXCITATION OR TRANSMITTER PROBLEM

In this section we determine the surface waves (and also
space waves) generated by the component part Ao when
the voltages and currents v4,1,v4.2,%4,1. and 24 in the
circuit model at the ports, i.e., at s = 0, are known (Fig.
1). We assume that the circuit model for the structure A was
based on the reciprocity definition introduced in [2]. First of
all we observe that v4 1,v42,%4.1, and ¢4 are not fully
independent. they are related through the S.4-matrix.

The voltage and current on both transmission lines can be
written as two waves or modes, one propagating in the positive
direction and one in the negative direction

va1(s) =2(Im,4.) "  exp(—iBais)K ],
+2(In,a4) "  exp(84.8) Ky,

= I, a.exp(—jBa.8)K}
= I 1. exp(jBa,is) Ky, (1)

Z‘A’Z(S)

with ¢ = 1, 2 and where 84, is the propagation coefficient
of the fundamental mode on interconnection line Ay ,. Ki’z
and K 4, are the excitation coefficients of the normalized
fundamental mode propagating in the positive and negative
direction. respectively. I,,, 4., is the total longitudinal current
of the normalized fundamental mode. Note that the character-
istic impedance Zcpar, 1 i given by 2(Z,, 4,) 2. The model
(1) is a reciprocity-current (RI) based transmission line model
[1] for the interconmections. If E. 4; and Hy, 4, are the
transversal field components of the fundamental mode then
this mode is normalized if

1 / (Buan X Huon)) -up dS = 1 P

where u,, is the unit vector along the line perpendicular to the
transverse plane Sj4 ;.

Using (1) it is possible to determine the excitation coeffi-
cients KM and K ifvy;andia; at s =0 are known by
simply inverting ( 1) for s = 0. The result is

K, =L 0045 =0)£2(Ia:) i, (s =0). (3)

This is the first step in the excitation problem. Given Va4,
and 14, at s = O we are able to determine by what amount
the cigenmodes in the lines are excited.

If the structure A is excited by a normalized mode along
for example A then we get the following current densities
on the structure 4

JE{l’)l = exp(jﬁA.ls)(_']s,A,lus + ']tr,A,l'u'tr)
+ G411 exp(—40a.18)(Je, A1ts + Jir, 4,1U4r)

on Ay,

J 2 =54,12xp(J0.4,28)(Je 4285 + Jir a0uir) on Afo
JS) on Ac

)

where J; 4, and Ji; 4, are the current densities of the
normalized mode on interconnection Ay, in the longitudinal
and transversal direction, respectively. S 4., are the elements
of the scattering matrix S 4 defined in [2]. The current density
J Ej) follows from an electromagnetic simulation of the struc-
ture A. Similar current densities (JE{ )1, Jf)(,, and Jf)) as in
(4) are generated when a mode is incident along Ara.

We are now interested in the fields generated by the current
densities J (Q .1 = 1,2 and especially in the generated surface
waves. It is possible to calculate these fields using different ap-
proaches. Since we consider planar metalizations it is suitable
to use a mixed-potential formulation [3]

/ [Ganlr, eIV ()

- VtGd,('rur V5
- IPr)] ds’

_ / {[Cani(r, TV
A

EM(r

— Vtvt G¢> ('r, ’I',)]
I ds' (5)

The subscript ‘t* denotes quantities parallel to the zy-plane.
We restricted ourselves to the xy-components of the electric
field because we will only need these components in the
sequel. G4 4+ and G are scalar magnetic and electric Green’s
functions, I is the two-dimensional (2-D) unit dyadic in the
zy-plane and V.V, is a dyad. Since these Green’s functions
only depend on z, 2’ and the radial distance p between r and
v, ie. p = |u, X (r—1)]. z|2")
and Gy(r,z|z'). Due to the layered nature of the structure
these Green’s functions are first determined analytically in
the spectral domain and are then numerically inverse Fourier
transformed

1 [t
Glocle) = 3= [ GOABOM D ©)

where G{p, z|2')(G(X, z|2")) is G4(p, 2|2 )(Ga(\ =]2")) or
Gg(p, 2|2 )(Gy(A, 7|2")) and where X is the radial spectral
variable. Using Cauchy’s residue theorem and after some
algebra we can rewrite (6) as [4], [5]

Glp, o)) = ?41; /Joo G(/TZ 1 12, 2))

Joo

.H(Z)(\/FZ + k2p)Tdl

——ZG ANVHP up)h. (D)

The first term is the contribution from a branch cut, i.e.,
the first term represents the space wave contribution. In (7)
we assumed that there was a semi-infinite layer at the top
of the structure and a metal plane at the bottom. If there
is also a semi-infinite layer at the bottom of the structure
an extra branch-cut integral has to be introduced. In (7) the
wavenumber k, is given by wWy/€utty with ¢, and g, the
material parameters of the semi-infinite layer. The square roots
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Fig. 4. Notations for the far field contribution of the surface waves generated
by the component part Ac of structure A.

in the integrand of (7) are defined such that their imaginary
part is not positive. H(§2) is the Hankel function of second
kind and order zero with its branch-cut along the negative
real axis. The second term in (7) represents the surface
wave contributions. The quantities A, (Im(A,) < 0) are the
propagation coefficients of these surface waves, i.e., of the
eigenmodes of the multilayered slab waveguide structure, and
G, (z|2') is the residue of G(\, z|2') at A = A,

Gy (27) = Jim (GO 2]) (A= A ®)

Since the amplitude of the surface waves only decays as
1/,/p and that of the space waves as 1/r, the surface waves
become dominant after some distance. This means that after
some distance from Ao the main contribution in (5) comes
from the surface waves. The contribution from surface wave
v is given by

B == [ [ Gasale NP ) I
. Ao ‘

—ViViGyou (2,2 VHS Mp)- TV ()] dS'. 9)

In a last step we look at the far field contribution of a surface
wave. If we insert the asymptotic form of the Hankel function
[6] in (9) and use the notations of Fig. 4 we obtain

z_ -1 [, :
ED(r) ~ —’Uz—) \/W:PO p(~iAup0)

AGaua(2V D (9)

+ A2l e FO (O} (10)

with

f‘J’(so)=// exp(fAue - AYJP () dS' (1)
Ac

867

where the unit vector u; is in the xy-plane. The functions
() are the surface wave radiation patterns for the part
A¢ with respect to an arbitrary origin O4 located inside A¢.
These functions fully characterize the far field surface wave
behavior of Ac.

IV. THE OBSERVATION OR RECEIVER PROBLEM

Now we want to determine the sources Vg 1, Vg 2, 1B 1, and
Iy , at the beginning of the transmission lines, i.e., at s = 0,
generated by a given incident field on the component part B¢.
Again a current-reciprocity transmission line model is assumed
for the interconnections By 1 and By o and the component B¢
is characterized through the Sp-matrix.

In a first step we determine by what amount the fundamental
eigenmodes in the interconnections By ; and By, are excited
through the interaction of the incident field E™, H'® with
the component part Bo. This incident field is a field which
propagates in the multilayered slab waveguide structure and
consists of surface wave and/or space wave contributions. A
standard approach to determine the interaction is to invoke the
Lorentz reciprocity theorem. To apply this theorem we need to
define two fields, labeled ‘a’ and ‘b’. Field ‘a’ is the scattered
field E°°, H*® originating from the scattering of the incident
field at the metalization of structure B. At the ports of B¢ a
part of this scattered field will consist of the eigenmodes of the
interconnections By ; and By . The transversal components
of the modal part of the ‘a’-field at these ports are given by

Ea,tr = K—E,z eXp(—jﬂB,is)Etr,B,z

Ha,tr :K‘—gﬂ exp(—jﬂB,zs)Htr,B,z (12)

where K};l are the yet unknown excitation coefficients of
the normalized modes E.; p ;, H, 5, in the interconnections.
For the moment we will assume that the modal part (12) of
the ‘a’-field is far more dominant compared to the remaining
scattered part (e.g., surface waves and space waves) at the
ports of Bg. The ‘b’-field is the field generated in structure
B due to an incoming normalized mode along for example
the interconnection By ;. Along the interconnection By ; the
transversal field components of this ‘b’-field take the following
form:

B, = exp(jBp.s) Bur,pa + b1 exp(~iB5,15)Eur 51
Hl(alt)r =—exp(j8p,15)H,p,1 + Sp11exp(—3fp,18)Her 51

(13)
and along the interconnection By o
Ez(,lt)r = SB,21exp(—3PB,25)Eir B2
HI(Jlt)r = Sp 21 exp(—jfB,25)Hux, B 2- 14)

In accordance with (4) the corresponding current density on
Bg is denoted Jp = Jg). Now we apply Lorentz-reciprocity
theorem on the volume of which a top-view is shown on
Fig. 5. This volume is bounded by the surface ¥ which is
invariant in the z-direction, i.e., X is a cylindrical surface
parallel to the z-axis, and which consists partly of the parts
of the transverse planes Sp 11 and Sp 12 at the ports where
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the modal field patterns are important and partly of a closing
surface Sclosmg located far enough from the structure B. In
principle this closing surface can be chosen at infinity. The
Lorentz reciprocity theorem takes the following form in the
defined volume

//(EubeﬁbeHa)-undS
=//(Eb-Ja~Ea~Jb)dS (15)
B¢

where u,, is the unit vector normal to the surface 3. If we
insert (12), (13) and (14) in (15) and use the fact that FE, is
normal to the surface By we obtain

4K}, = - / / E<.J9 ds. (16)
B¢

It can be shown that the contribution of the closing surface
Sclosing becomes negligibly small when S;iosing is located far
enough from the structure B. Since the tangential component
of the total electric field at the surface B¢ has to be zero we
have that u, x (£° 4+ Ein) = (0 and we can rewrite (16) as

I(;l = ——%‘// E™. Jg) dS = —%// Ei’“.Jg) ds. (17
Be Be

S

closing

Cylindrical bounding surface 3= around the structure B¢ used for the application of the Lorentz-reciprocity theorem. The surface & 1s composed

This expression allows us to calculate by what amount
the eigenmode in the interconnection By i is excited due to
interaction of the incident field with the component part Be. It
is noted that only the xy-components of E* come in between
for the considered planar structures. As mentioned earlier we
had to assume that the nonmodal part of the scattered field at
the port planes Sp 1 and Sp 2 was negligible. This assumption
however can be dropped as is shown in Appendix B. It is
shown that if the port planes are taken further down the
interconnection lines the excited modes in those lines have
two different origins. The first contribution is given by (17)
and the second contribution comes from the interaction of the
incident field with the modal currents of the interconnection
lines. This last contribution corresponds with the situation of
Fig. 2. In fact, Appendix B proves that it is allowed to separate
the interaction with the component part from the interaction
with the interconnection lines. Let us return to the situation of
Fig. 1 and assume that our incident field is the field generated
by Ac. In the previous derivation it is then assumed that the
structure A is located outside the surface 3. At the same
time the scattered field has to be negligible at this surface.
These two assumptions will be compatible if the effect of the
presence of circuit B is negligible on the working of circuit
A when circuit B is not excited at his interconnections.

As a last step we have to translate the excitation coefficient
KEJ to the sources Vg1 and Ig 1. Using the transmission line
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Fig. 6. Two interacting structures with arbitrarily shaped 3-D component parts and arbitrarily shaped 2-D interconnection parts embedded in a layered medium.

&

&l
Fig. 7. Geometry of a microstrip substrate.

equivalent defined in [2] it is easy to show that these sources
are given by

VB =2(Im,B,1)_1K§,1

Ig) =Inp1K%,. (18)

These two sources generate a mode in the transmission line
By, with excitation coefficient K 3,1 propagating away from
Be. If the “‘b’-field in the Lorentz reciprocity theorem is the
field generated by a normalized mode incident on B¢ along
By 5 then we can determine Vg 5 and Ip 5.

V. GENERAL THREE-DIMENSIONAL STRUCTURES

Up to now we concentrated on planar perfectly conducting
metalization structures. In this section we will generalize
the previous results to general three-dimensional (3-D), not
necessary perfectly conducting, objects embedded in layered
media. This allows the incorporation of finite conductivity and
finite thickness which is important for MCM’s. In this way it
is in principle possible to apply the theory also to dielectric
waveguide circuits.

Consider the structure of Fig. 6 which is a 3-D gener-
alization of the structure on Fig. 1. The interconnections
Ar1,A52,Br; and By, are now general open waveguides,
which have been studied in for example [7], [8]. The compo-
nent parts Ac and Be are arbitrarily shaped 3-D structures
connecting the interconnections. The same assumptions are
made concerning the modal character of the interconnections
as in the planar case. Remark that A7 1, Ay 9, Ac, Br1, Br,2,
and B indicate the external surface of the structures A and B.

First, we concentrate again on the transmitter problem. The
transmission line description remains the same as in the planar

case, i.e., (1)—(3) remain valid [1]. Let ES) and H EZ) denote
the electric and magnetic fields in the component part of the
structure A when it is excited by a normalized mode along
Ay ;. In fact we only need the equivalent electric and magnetic
current densities JEZ) =uxH X) and K f;) = ES) X %y, on
the surface A¢. These have to follow from an electromagnetic
analysis of the structure A. To determine the fields generated
by J, @) and K S) we have to generalize (5) to a coupled field
mlxed—potential formalism [9], [10]

B9 // (Galrlr) = VVG(rir)] - T ()

- ‘—~[v x Gp(r|r')] -Kﬁ{)(r')} s’

HO(r / (Gr(rlr) — VVGy(rir)] - KO
1 2 / !
— jw—u[v x Ga(rlr)] - I (r )} ds’ (19
with

GA : GA,ttItt + VtC:A,tz'u'z + 'u'zthA,zt + GA,zzuzuz
Gr = GF,ttItt + thF,tzuz + uzthF,zt + GF,zzuzuz
(20

where GA,tt; GA,tz 7GA,zt7 GA,zz;GF,tty GF,tz7GF,zt, GF,zz7
G4, and G, are scalar Green’s functions for the magnetic
vector potential, respectively, the electric vector potential,
the electric scalar potential and the magnetic scalar potential.
Again all these Green’s functions only depend on p,z and
z' and hence we can proceed as in (6)~(11). However the
component part Ac is now described by two sets of surface
wave radiation patterns f()() and g( )( )

= / / exp(jhu - Ar)JP (1) dS’

g = / / exp(Ghu- Ar) KP(P)dS'. (@21
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d =3.04 mm

port B

Fig. 8. Geometry of the metalization of two square patches.

Also for the observation or receiver problem we can proceed
as in Section 1V. By carefully applying Lorentz reciprocity
theorem as is done for the 2-D case in [2] it is possible to
show that (17) has to be generalized to

Rg,=-3 // [ES) x H® — E™ x H)] -w, dS. (22)
Be

It has to be emphasised that (E™, H'™) is the incident field
generated by structure A in the layered medium without the
presence of structure B.

V1. APPLICATION

Now we will apply the technique of Section III and Section
IV to the dominant surface wave of a microstrip substrate. Fig.
7 shows the geometry of the substrate consisting of two layers
above a perfectly conducting plate. The bottom layer has a
thickness » and permittivity €; and the top layer has infinite
thickness and permittivity €». Both layers are nonmagnetic,
ie., u1 = Mo = po. The spectral scalar Green’s functions
G 44t(A) and G4(A) for z = 2’ = h are easily determined
and given by

() = 7Y ZYsh(T'yh)
AT ZISh(Doh) + Z7ch(T2h)
Cu() = sh(D';h) 21 Zysh(T'2h)
VTN | Zhsh(T'oh) + Z{ch(Ish)
Z ZYsh(Iah)
2
+ Zysh(Tah) + Zych(T'9h) 23
with
Z::L zi = I oo e g2 24)
Jwe, Fz

with ¢ = 1, 2. The propagation coefficient A; of the dominant
surface wave mode, which is a TM-mode, is solution of

Zhsh(Tyh) + Zich(T'2h) = 0 (25)

Radiation pattern Ifl((p).utI(Amm)

270°

Fig. 9. Surface wave radiation pattern |w; - £, (¢)| of the current distribution
on the left patch of Fig. 8.

The residue G,1 of G¢(\) for this surface wave is

1 7424
Gea(h) = — 172 :
w1 =3 7 7%k 75 Zh
I3z, T:7 T,

As an example we consider the configuration of Fig. 8
at a frequency of 3 GHz. The substrate has the following
characteristics: A = 3.17 mm.¢,; = 11.7 and €. = 1.
The metalization pattern consists of two square patches with
dimensions 9.12 mm X 9.12 mm, separated by a horizontal
distance Ly and a vertical distance Ly-. Both the patches are
exited by a microstrip line with width d = 3.04 mm. The port
of each patch is taken 3.04 mm down the microstrip lines. The
characteristic impedance Z.p,, = 48.04 ) and the propagation

(20)
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coefficient 8 = 2.9151k, of the fundamental mode of the
microstrip lines were calculated with a classical 2-D spec-
tral domain moment method- analysis. With a commercially
available electromagnetic simulator for planar structures (HP-
Momentum from HP EEsof) the current distribution on one
patch was determined when excited at its port. The Sa4-
parameter obtained by this simulator is given by Sa4 =
0.255 + 0.9595. At 3 GHz the propagation coefficient of the
sole surface wave above cut-off is given by A; = 1.022 26k,
and the corresponding residue G 1(A;) = 14075j5. Fig. 9
shows the radiation pattern |f;(¢) - u;| corresponding to the
current distribution of the patch. Note that for the given
frequency this is almost a perfect dipole radiation pattern. Fig.
10 shows the modulus of the S 4p-parameter, calculated with
the theory described in previous sections as a function of the
horizontal distance Ly when Ly = 0. The dots on the figure
are results obtained from an electromagnetic simulation of the
total 2-port structure consisting of patch A and patch B. A
good agreement is found between both results and as expected
this agreement becomes even better for larger distances when
the surface wave becomes more dominant. Also the phase of
Sap (not shown on the figure) is in good agreement. In Fig.
11 results are presented when Ly = 0.2 m. Fig. 12 shows
an equivalent circuit for the whole structure of Fig. 8. The
impedance Z is given by

7 - 2(1+ Saa)
T I2(1—Say)

and the sources Vp and Ip depend on the currents 74 and
are given by

7

v, 2SAB .
= —e—t———eq,
B Ifn(l — SAA) 4
Sap .
ip = mZA (28)

Va and I4 follow from symmetry.

VII. CONCLUSION

The interaction between structures embedded in layered
media was investigated. It was shown that each component
can be represented by a surface wave radiation pattern. On
the other hand the influence on a component of an incoming
electromagnetic field was investigated by means of the Lorentz
reciprocity theorem. This influence was represented by voltage
and current sources at the ports of the circuit model of the
component.

APPENDIX A

For notational simplicity we assumed in the main text
that the interconnections were monomodal. In this appendix
the equations are generalized to multimodal interconnections
which propagate more than one mode. Important examples
of multimode interconnections are coupled microstrip lines
and coupled coplanar waveguides. In the circuit model these
multimodal interconnections are represented by coupled trans-
mission lines [1].

IS, 10018
A O I I I B B
0.016 —
Surfacewave coupling
0.014 - ®  Full EM-simulation |
]
0.012
0.01 1
0.008 ?
0.006
0.004 j
0.002 S F—
O TV T VP T T T VeI evrrgrrerfrrrerpryrogoeoey
0 05 1 15 2 25 3 35 4 45 5
Ly (m)
Fig. 10. |Sap| as a function of the horizontal distance Ly between the

patches of Fig. 8 when Ly = 0. The full line is obtained with the theory
of this paper and the dots are results from an electromagnetic simulation of
the global structure.

IS, 5l 0.018 1 | I

: L[ 1]
0.016 ]
Surfacewave coupling

Full EM-simulation FJ

0.014 4 ®

0.012

0.01

0.008

bt

0.006 -}

0.004

bbb 1L

0.002

LI 0 S I I O O 2

1.5 2 25 3 35 4 45 5
Ly(m)

0
0 05 1

Fig. 11. |Sap| as a function of the horizontal distance Lz between the
patches of Fig. 8 when Ly, = 0.2 m. The full line is obtained with the theory
of this paper and the dots are results from an electromagnetic simulation of
the global structure.

If the interconnection Aj ; propagates N 4 ; modes then the
voltages and currents on the corresponding set of coupled
transmission lines are written as

Van = 2@5,1«1@)_1 eXp(—jﬁA,iS)_Kiz
+ 2(1%,4,1')_1 eXP(jﬁA,iS)KZ
tas=dm oAy ﬁxP(*iﬁA’iﬁ)K-X,i

“dLm,A eXP(ng7iS)E_Z’,;-

2

29

This is the generalization of (1). v4 ; and 1, ; are column
matrices with N4, elements, K Ay is a column matrix with

the N4; excitation coefficients of the modes, I, 4, is a
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Vi ip

*—

Fig. 12. Equivalent circuit for the structure of Fig. 8.

(2)

Vg As)ds VB,J
$ OO
4 ¢ BC
B, Iy (s)ds 3 EBIBI
F—— »
2¢ N Sp
= —
>
- .
< -
b)

Fig. 13. Close-up of the interconnection By ; to demonstrate the separa-
bility between interaction with the component part and interaction with the
interconnection part.

Na, x N4, matrix with the longitudinal currents on each
line for each mode [1] and ﬂ is a diagonal matrix with the
propagation coefficients of the dlfferent modes. The inversion
of (29) at s = 0 becomes

sz =1 [I'm A, eril 1(8 - O) + 2(Im.:1.z)~1iA‘z(S = 0)]
.30)
If the structure A is excited by normalized modes along for
example 4; 1, then we get the following current densities on

the structure A

I = exp(i8, 8 (—d, e + Ly g 1)
+ Sap1exp(—iBy (SN a1%s + Jip 4 18er)
on AIﬂl
1 .
I =510 exp(jf 4 ,8)(Ls a0ts + Lo 4 2tix) om Apz
lA(_ll) on AC
€Y
where S 4 11 i1s a N4, x N4, submatrix of S 4. describing
the reflections and cross-reflections of the NV,4 ; modes at the

B [

is VB
(ve —e
z 8 I
@— ®

component part Ac. The remaining part of the transmitter
problem is easily generalized to multimodal interconnections.
We just want to mention the generalization of (11)

196 = [ etiduc ande s @2

where f( ") is a column matrix with N, elements represent-
ing the surface wave radiation patterns of surface wave v
generated by each of the modes at all the interconnections.
The receiver problem equations (12)~(14) are easily gen-
eralized as in (31). Finally (17) and (18) are generalized

as
- mn 1
Kf,=-1 // ER g% ds (33)
Be
and
Vg =2(l:z,B,1)_1KE1
Ipi =1L, 5.K5,. (34)

APPENDIX B

In this Appendix we will show that it is allowed to sep-
arate the interaction of an externally incident field with the
interconnection lines from the interaction with the component
part. Let us concentrate on the close-up on Fig. 13(a) of the
interconnection By ; and the component part Be. In stead of
taking the port at Sp 1, i.e., s = 0, we now take the port
further down the line at S, i€, s = A. In this way the
component part increases by an amount AB¢. The currents
Jy, of the “b’-field on AB¢ are modal and take the following
form (see also (4)):

Jb = Jg?l = eXp(jﬂBJS)(_Js,B,lus + -]tr,B,lu'br)
+ Sp11exp(—7088,18)(Je.B,18s + Jir, 3,1 )

on ABc. (35)

If we now proceed as in (17) we get the following result
for the excitation coefficient K, at the port plane S ,

[

ABe
) [exp(jﬂB.ls)(_Js.B.lus + Jtr,B,l'u't'r)] das

-3 53‘11/ E"

ABe
- lexp(—38B.18)(Je.B1%s + Jir, B 1UL)] dS

K =4 [[ B as -

(36)
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We can rewrite this as
A
Ky =Ky + [ Kha(o)exp(ifin,o) ds
0

A
+ SB,ll/ Kg (s)exp(—jBp,1s) ds (37)
0 .

where we used (17) for the first term on the right-hand
side of (36). In the two other terms on the right-hand side
we ‘separated the longitudinal integration in the s-direction
from the transverse integration. The transverse integration
is incorporated in the definition of the distributed excitation
coefficients K;l(s) ds and Kz ,(s) ds

: (—JS,B,I'U'S + Js,B,trutr) de ds

o (JS,B,lus + Js,B,trutr) dc ds
(38)

where c is a transversal integration line on ABc. The last
two terms in (37) are represented in the circuit-model as
distributed sources Vp,1(s) ds and Ip;(s) ds in the trans-
mission line Bj,; with the theory of [2]. Remark that the
Jongitudinal integrals of the excitation coefficients K3 B1(s) ds
and Kp,(s) ds with the phase factors exp(jfp,1s) and
exp(—j i3 5,18) correspond to the coefficients P and () defined
in [2]. The first term on the other hand is represented by
the discrete sources Vp 1 and I given in (18). Hence, the
excitation coefficient K5, can be interpreted to consists of
three parts indicated by the arrows on Fig. 13b. The first part
is directly generated by the discrete source at s = 0 or in
other words by the interaction of the incident field with the
component part Bo. The second and third part are generated
by the distributed sources or in other words by interaction of
the incident field with the interconnection line. The second
part is a direct wave and the third part an indirect wave which
partly reflects at the component part, i.e., at s = 0.
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