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Abstract— Traditionally a circuit on a high-speed multichip
module (MM) or a microwave monolithic integrated circuit

(MMIC) is represented in an equivalent circuit by S-parameters
for the different components, such as filters or bends, and

by transmission lines for the interconnections between the
components. Nowadays the S-parameters of the components

are easily determined by a numerical electromagnetic analysis.
Different components close to each other will interact, often

this interaction is unwanted. In the present contribution we
develop a circuit model for these interactions without having
to perform a global electromagnetic analysis of the interacting

components. These interactions are then represented by discrete

and distributed sources in the equivalent circuit. Our technique
is based on reciprocity and is focused on the surface wave
interaction which is often the most important one. Each

component is characterized by a surface wave radiation pattern.

I. INTRODUCTION

M ULTICHIP modules (MCM’s) and microwave mono-

lithic integrated circuits (MMIC’S) typically consist

of metal ization patterns embedded in a layered structure.

Certainly for a MCM, and often also for a MMIC, it is not

possible to perform a global electromagnetic simulation that

incorporates all the interactions between the different circuits

on a MCM or MMIC. Modeling large parts of a circuit

at once is very CPU-time consuming and often impractical

because every time the design of the circuit is changed the

modelmg has to be repeated. Due to the layered nature of

the substrate the most important interaction between different

separated circuits on the same MCM or MMIC is surface wave

coupling. Our aim is to characterize each circuit by a surface

wave radiation pattern and to represent the interaction of a

surface wave with a circuit by a current and voltage source in

the circuit model of the circuit. In essence we approach the

problem as a transmitter and receiver surface wave antenna

problem,

A typical circuit on a MCM or MMIC consists of in-
terconnections and what we will call components. These

components are everything which deviates from an intercon-

nection structure such as bends, steps in width, filters, active

components, lumped elements, via holes, air bridges, etc..

In a high frequency circuit description the interconnections,

which act as waveguides, are represented by an equivalent
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transmission line model and tbe components are represented

by their S-parameters. In the past much theoretical effort

has been spent in constructing equivalent transmission line

models for high-frequency interconnections. In [1] a rigorous

equivalent transmission line model has been derived based

on reciprocity considerations. In the same publication the

meaning of the impedance level of the transmission line

model and at the same time the meaning of S-parameters

for connected components has been carefully investigated. In

[2], based on the same equivalent transmission line model

and on the Lorentz reciprocity relation, a circuit model for

the incidence of electromagnetic waves on interconnections

has been investigated. The impinging wave is represented as

distributed current and voltage sources in the transmission line.

Traditionally, components are described by their S-parameters

at the ports where the electromagnetic field is assumed to

be modal. Nowadays electromagnetic field simulators are

available to determine the S-parameters of a very large variety

of components.

Although we will mainly concentrate on surface wave

coupling, it will be shown that other coupling mechanisms

such as space wave coupling can be handled with the same

techniques. Because of their importance and to make the theory

more intelligible we will start with planar perfectly conducting

circuits. Later the generalization to general three dimensional,

not necessary perfectly conducting, objects embedded in lay-

ered media will be discussed. This makes the theory also

applicable to dielectric waveguide circuits.

11. SCHEMATIC REPRESENTATION

To focus our attention let us consider the planar metalization

structure of Fig. 1. The figure shows the top view of the

structure and it is assumed that the metalization is located

inside or on top of a stack of layers which can be backed

with a ground plane. The structure consists of two separated

circuits, indicated with A and B. Each circuit consists of a

number (two in the case of the figure) of interconnections

(hatched regions on the figure) and a component part, The

interconnections, indicated by the subscripts ‘1, 1‘, ‘1, 2’, etc.,

provide interaction with the external world, i.e., with other

circuits. In the sequel we will assume two interconnections

for each component but the theory is of course valid for any

number of interconnections. The component part, indicated by

the subscript ‘C’ is an irregular planar metalization pattern,
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Fig. 1. Interaction between the component parts of two planar metalization structures and the corresponding representation by discrete sources.

such as a filter, a step in width or just a bend. The places

where the interconnections are connected to the component

part are called the ports of the component.

Suppose for a moment that only circuit A is present and

that we have modeled this structure with an electromagnetic

simulator. From this simulation we know the current densities

on the metalization for each excitation of the structure by

a fundamental mode on the interconnections AI, 1 and AI,2.

It is assumed that the fields along the interconnection parts

AI) ~ and AI,2 are monomodal and that other higher order

modes, discrete or continuous, generated in the component

part Ac have died out and are negligible compared to the

fundamental modes at the ports. If this is not the case then

the interconnection part must be reduced and the component

part must be enlarged. From the electromagnetic simulation

we obtain a circuit model for circuit A consisting of two

transmission lines, which represent the interconnections, and

a scattering parameter matrix SA which describes the compo-

nent part Ac. It has to be remarked that if the interconnection

propagates more than one fundamental mode (for example

an even and odd mode in two parallel microstrips) or if

also higher order modes are important, for example at higher

frequencies, the interconnections can be represented by a

coupled set of transmission lines. The generalization of the

theory to multimode interconnections is presented in Appendix

A. A similar electromagnetic simulation for the circuit 1?

yields the surface current densities on the metalization and

the scattering parameter matrix SB.

If both circuits are present they will interact. This means

that the whole structure starts to act as a four-port. One

way to characterize this structure is to perform one global

electromagnetic simulation for the whole structure and derive

the 4 x 4 scattering parameter matrix of the structure. This

might still be manageable for the simple structure depicted in

Fig. 1 but this technique is certainly to CPU-time consuming

for a whole MCM. To overcome this problem we will adopt a

different technique to take into account the interaction between

circuit A and l?. However, we have to make the assumption

that the effect of the presence of circuit B on circuit A is

negligible when circuit B is not excited at its interconnections.

Clearly this assumption will fail, e.g., if circuit A and B are

parts of the same filter structure which is designed to have

strong interaction between its different parts. However, when

circuit A and B are truly two different structures then the

present method will be able to calculate the electromagnetic

interference between both circuits. For planar structures in

layered media the most important interaction between such

different structures is due to surface waves. These surface

waves are eigenmodes of the layered structure in the absence

of the metalization patterns and they are excited by the current

densities on discontinuities, such as the components AG and

Bc. Except for this surface wave interaction, there is also
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Fig. 2. InteractIon between the fields generated at the component parts with the interconnection parts of the other structure and representation by

distributed sources

interaction through space waves. i.e., through radiation in the

airabove themetalization. In this case Ac andl?C act as real

antennas. However, it is often the surface wave interaction

which is dominant because the surface waves decay more

slowly than the space waves as a function of the radial

distance,

Now we will give a schematic overview and circuit rep-

resentation of the interaction between circuits A and B. We

will separate the interaction between structure A and B into

four parts. The first type of interaction together with the

circuit model is shown in Fig. 1. This first type of interaction

takes into account the incidence of electromagnetic waves,

generated by the currents of Ac, on BC and vice versa.

So if circuit A is excited by a mode along one of its

interconnections, the currents on Ae will generate surface

waves. These surface waves will induce currents on BC and

excite the fundamental eigenmodes, which propagate away

from Bc, in the interconnections ~1,1 and BI,2. In the circuit

model this interaction is represented by the current and voltage

sources lB,l, 1B,2. VB,l. and VB,2 at the ports of structure 1?

which depend on the currents and voltages i.~, 1, i.~,2, VA,1,

and t]~,z at the ports of circuit A. Indeed i.1,1. i..t 2, VA,l

and v~,z determine or represent by what amount the eigen-

modes in the interconnections of structure .4 are excited

and IB, 1, IB, z, IJB, 1, and T’B, z represent the excitation of the

eigenmodes in the ports of structure B. The sources IB, 1 and

V~, 1(1~,2 and VB,2) are designed such that they generate

a wave or mode in the transmission line EII,l (BI,2 ) which

propagates away from the component Bc. Due to linearity

the sources IB, 1, IB,2, TTB 1. and VB,2 are linear combinations
of the circuit parameters L<A,l, ii,z, u~,l, and W44,2.The above

reasoning can be repeated when surface waves generated in

Bc interact with Ac.

Fig. 2 depicts the second type of interaction. The surface

waves generated at AC will not only generate eigenmodes in

the interconnections B1, 1 and BI,2 through interaction with the

component part Bc of circuit B but also directly through in-

teraction with the interconnections BI, 1 and BI,2 themselves.

The interaction of impinging waves on interconnections was

studied in detail in [2]. The circuit equivalent of this type of in-

teraction is also shown in Fig. 2. The interaction is represented

by distributed sources lB,I(s) ds, 1B,2(s) ds, VB,l(S) cls, and

VB,2 (s) ds in the transmission lines which depend on the

currents and voltages ‘i.A,l, ‘i. +z,V.4,1. and v,4z at the ports of

Ac. Here s denotes the distance from the component along the

considered transmission line. Of course by a simple integration

it is possible to concentrate the distributed sources along a

part of a transmission line in a discrete source placed at some
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Fig. 3. Interaction between the fields generated at the interconnection parts with the component part of the other structure and representation by discrete sources.

point of that part. This discrete source will have the same

effect outside the considered part of the transmission line as

the distributed sources on that part.

Normally an eigenmode propagating along an infinite in-

terconnection or waveguide does not interact with surface

waves. This is however not true for a finite or semi-infinite

interconnection line. This brings us to a third type of in-

teraction which is the reciprocal of the previous type. The

interconnections A1, 1 and A1,2 will generate surface waves

which, through interaction with Bc will generate eigenmodes

in the interconnections BI, 1 and BI,2. This situation is shown

in Fig. 3 together with the circuit equivalent. The circuit

equivalent consists of discrete sources lB,l, 1B,2, VB,l, and

VD,2 at the ports of Bc which depend on the currents

and VOktgeS iA,l(s), iA)2(s), VA,l($), and fl&(~) Of each

elementary part ds of the interconnections AI, 1 and A1,z.

Of course one could again integrate along a part of the

interconnections AI,l or AI,2 to concentrate the effect of

this part into one contribution. As mentioned, this third type

of interaction is reciprocal to the second type of interaction.

This allows us to draw an interesting conclusion. Since an

eigenmode on an infinite interconnection does not generate

surface waves it is to be expected that for a semi-infinite

interconnection only the part near the end, i.e., near the port

of the interconnection, will generate substantial surface waves.

The contribution from parts further away from the port will be

less important. Each part of the semi-infinite transmission line

will generate the same amount of surface waves but for the

parts further away from the port there will be a more and more

destructive interference between the surface waves generated

by different parts. This means that we can restrict ourselves

to the contribution of a small part of A1,l and AI,2 close to

Ac. And from reciprocity this means that for the second type

of interaction we can restrict ourselves to the contribution of

distributed sources close to Ac or Bc.

From the third type of interaction it is natural to deduce

the fourth type of interaction. The surface waves generated

by the interconnections AI,l and AI,2 will also directly

generate eigenmodes in the interconnections B1, 1 and BI,2.

The circuit model for this type of interaction consists of

distributed sources ~B,l(.S) ds, lB,z(s) ds, V_,l(s) ds, and

Vj3,z (s) ds in the transmission lines which depend on the

currents and voltages iA,l(.S), iA,z(s), VB,l(S), and VB,Z(S) in

each elementary part ds of the interconnections AI, 1 and AI, z.

Due to the fact that interconnections do not interact very

strongly with surface waves, it is clear that the first type

of interaction is the most important one and the fourth type

of interaction is the least important one. In this paper we

will concentrate on this first type. In essence the third type

of interaction is only a special case of the first type which
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means that with the theory of this paper it is also possible to

calculate this interaction. The second and also the fourth type

of interaction can recalculated with the theory of [2].

III. THE EXCITATION OR TRANSMITTER PROBLEM

In this section we determine the surface waves (and also

space waves) generated by the component part Ac when

the voltages and CUtTentS ?)A,l, v.4,2, ~A, 1. and iA,~ in the

circuit model at the ports, i.e., at s = O, are known (Fig.

1). We assume that the circuit model for the structure A was

based on the reciprocity definition introduced in [2], First of

all we observe that v.4,1, v~,z, i.~.l, and i.~,z are not fully

independent, they are related through the S~ -matrix.

The voltage and current on both transmission lines can be

written as two waves or modes. one propagating in the positive

direction and one in the negative direction

‘vA,l(s) =2( Im,.4, i) ‘1 exp(–j~~,~.s)K~,,

+ 2( Im,.4i)-1 exp(jll~, zs)~.; ,,

iA,t(S) = In,.4,z exP(–j@A,zs)K.~,i

– Im,A,, f=djPA,js)~.;,, (1)

with i = 1, 2 and where ~,4,, is the propagation coefficient

of the fundamental mode on interconnection line AI,,. K<~ ~

and K~, are the excitation coefficients of the normalized

fundamental mode propagating in the positive and negative

direction, respectively. ln,.4, is the total longitudinal current

of the normalized fundamental mode, Note that the character-

istic impedance z’char,A.i is given by 2(lm,.A,, )‘2. The model
(1) is a reciprocity-current (RI) based transmission line model

[1] for the interconnections. If &.,,4,~ and ~,,,~,, are the

transversal field components of the fundamental mode then

this mode is normalized if

~
2

l!!
(J%4,? x ~tr,.,,,) ~‘% M = 1 (2)

S–’.4, %

where Un is the unit vector along the line perpendicular to the

transverse plane SA,~.

Using (1) it is possible to determine the excitation coeffi-

cients K~,, and K~,t if V-4, j and i~, i at s = O are known by

simply inverting (1) for s = O. The result is

( -0, + 2(~rn,.4,i)-’i.-i, ~(s = 0)1 (3)‘.f7, = + [~m,.4iz7]A, ~ s –

This is the first step in the excitation problem. Given V.t),

and i~,, at s = O we are able to determine by what amount

the eigemmodes in the lines are excited.

If the structure A is excited by a normalized mode along

for example AI, 1 then we get the following current densities

on the structure .4

J(l) = eXI)(jfl.4,1S) (- Js,A,l~5 + ,Jtr,A,l”tr)
.4,1

+ S..L,11 exp(–jB~,ls)(Js,.4,1u. + ~t,,,.4,1zk)

on AI)l

J(l) – S4 12exp(jp..i~s)(~,,.~,~% + ~tr,.~,~~tr) ou AI,ZA,2 —.,

J;)
on Ac

(4)

where J,).4), and Jt, .4,, are the current densities of the
normalized mode on interconnection AI, 1 in the longitudinal

and transversal direction, respectively. Si,,j are the elements

of the scattering matrix S~ defined in [2]. The current density

~(1) follows from an electromagnetic simulation of the struc-

tu;e A. Similar current densities (Jy)l, ~~~, and .7:)) as in

(4) are generated when a mode is inc’ident ~long AI,2.

We are now interested in the fields generated by the current

densities J!’)~ , I = 1, 2 and especially in the generated surface

waves. It is possible to calculate these fields using different ap-

proaches. Since we consider planar metalizations it is suitable

to use a mixed-potential formulation [3]

‘h’
..

{[GA, tt(r, r’)It,
..!~

– VtVtG@(r, r’)]

~J:;) (r’)} dS’. (5)

The subscript ‘t’ denotes quantities parallel to the zy-plane.

We restricted ourselves to the z~-components of the electric

field because we will only need these components in the

sequel. G.4,tt and G@ are scalar magnetic and electric Green’s

functions, ltt is the two-dimensional (2-D) unit dyadic in the

xy-plane and Vt Vt is a dyad. Since these Green’s functions

only depend on z, z’ and the radial distance p between r and

r’, i.e., p = Iu, x (r – r’)1, we write them as G.4,tt(p, zIz’)

and G@(r, z Iz’ ). Due to the layered nature of the structure

these Green’s functions are first determined analytically in

the spectral domain and are then numerically inverse Fourier

transformed

+Cc
G(p, zlz’) = ~

/
G(A, zlz’).JO(Ap)A d~

2T ~
(6)

where G’(p, zIz’)(G(J, zIz’)) is G.4(p, zlz’)(G.4(A, z]z’)) or

Gd(p, zl,z’)(Gd(,l, zIz?) ) and where ~ is the radial spectral

variable. Using Cauchy ’s residue theorem and after some

algebra we can rewrite (6) as [4], [5]

The first term is the contribution from a branch cut, i.e.,

the first term represents the space wave contribution. In (7)

we assumed that there was a semi-infinite layer at the top

of the structure and a metal plane at the bottom. If there

is also a semi-infinite layer at the bottom of the structure

an extra branch-cut integral has to be introduced. In (7) the

wavenumber kU is given by w- with eU and pU the

material parameters of the semi-infinite layer. The square roots
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Notations for the far field contribution of the surface waves generated

by the component part A~ of structnre A.

in the integrand of (7) are defined such that their imaginary

part is not positive. 11$) is the Hankel function of second

kind and order zero with its branch-cut along the negative

real axis. The second term in (7) represents the surface

wave contributions. The quantities AU (Im(Au) S O) are the

propagation coefficients of these surface waves, i.e., of the

eigenmodes of the multilayered slab waveguide structure, and

Gv(.zl.z’) is the residue of G(A, zIz’) at A = AV

Gv(zlz’) = +q [G(A, .+’)(A – A/)]. (8)
v

Since the amplitude of the surface waves only decays as

1/& and that of the space waves as I/r, the surface waves

become dominant after some distance. This means that after

some distance from AC the main contribution in (5) comes

from the surface waves. The contribution from surface wave

v is given by

E$;(?’) = – j .‘A l’][GA)tt,v(z, z’)H$)(Av&7;)(r’)
AC

–VtVtG4,v(z, Z’)H$)(h/p)J~) (T’)] dS’. (9)

In a last step we look at the far field contribution of a surface

wave. If we insert the asymptotic form of the Hankel function

[6] in (9) and use the notations of Fig. 4 we obtain

~ {GA,tt,V(ZIJ)f$) (P)

+ A: G@,v(zlz’)[ut . f:)(p)]ut} (lo)

with

f :)(p)= // exp(j~uut . Ar)Jf) (r’) dS’ (11)

AC

where the unit vector ut is in the ry-plane. The functions

~$) (P) are the surface wave radiation patterns for the part
Ac with respect to an arbitrary origin OA located inside Ac,

These functions fully characterize the far field surface wave

behavior of Ac.

IV. THE OBSERVATIONOR RECEIVER PROBLEM

Now we want to determine the sources V~,l, V~,z, 1~,1, and

IB,2 at the beginning of the transmission lines, i.e., at s = O,

generated by a given incident field on the component part Bc.

Again a current-reciprocity transmission line model is assumed

for the interconnections B1,l and BI,2 and the component Bc

is characterized through the SB -matrix.

In a first step we determine by what amount the fundamental

eigenmodes in the interconnections BI, 1 and BI,2 are excited

through the interaction of the incident field J!3’n, If’n with

the component part Bc. This incident field is a field which

propagates in the multilayered slab waveguide structure and

consists of surface wave andlor space wave contributions. A

standard approach to determine the interaction is to invoke the

Lorentz reciprocity theorem. To apply this theorem we need to

define two fields, labeled ‘a’ and ‘b’. Field ‘a’ is the scattered

field E’c, Ifsc originating from the scattering of the incident

field at the metalization of structure B. At the ports of BC a

part of this scattered field will consist of the eigenmodes of the

interconnections B1, 1 and BI,Z. The transversal components

of the modal part of the ‘a’ -field at these ports are given by

Ea,tr = K&,i f3Xp(-~~B)iS)&r,B,~

~a,tr = Kj,t exp(–jp~,,s)~tr,~,t (12)

where K~:% are the yet unknown excitation coefficients of

the normahzed modes Etr,B,i, Htr,B ,t in the interconnections.

For the moment we will assume that the modal part (12) of

the ‘a’ -field is far more dominant compared to the remaining

scattered part (e.g., surface waves and space waves) at the

ports of Bc. The ‘b’-field is the field generated in structure

B due to an incoming normalized mode along for example

the interconnection B1,1. Along the interconnection Br, 1 the

transversal field components of this ‘b’-field take the following

form:

E(l) – exp(j~~ ls)l%,~,l + SB,ll exp(–j8B,ls)&r,~,lb,tr —

H~l~r= – ex P(~~B,ls)Htr,~,l + SB,lI eXP(–.?’@B,13)Ht,, B,l

(13)

and along the interconnection BI,2

E(l) = SB 21 exp(–jPB,2s)&,B,2b,tr ,

(14)H(l) = SB 21 exp(–j6~,zs)Htr,B,z.b,tr ,

In accordance with (4) the corresponding current density on

BC is denoted Jb = Jg ). Now wc apply Lorentz-reciprocity

theorem on the volume of which a top-view is shown on

Fig. 5. This volume is bounded by the surface X which is

invariant in the z-direction, i.e., E is a cylindrical surface

parallel to the z-axis, and which consists partly of the parts

of the transverse planes SB ,1,1 and SB ,1,2 at the ports where
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Fig. 5. Cylindrical bounding surface Z around the structure Bc used for the apphcation of the Lorentz-reciprocity theorem. The surface Z m composed

the modal field patterns are important and partly of a closing

surface SCIO,l.g located far enough from the structure B. In

principle this closing surface can be chosen at infinity. The

Lorentz reciprocity theorem takes the following form in the

defined volume

[/
(EO X _EZb – E, X H.) ~u. dS

where Un k the unit vector normal to the surface X, If we

insert (12), (13) and (14) in (15) and use the fact that E~ is

normal to the surface Bc we obtain

It can be shown that the contribution of the closing surface

scl..in~ becomes negligibly small when Sclo,,ng is located far
enough from the structure B. Since the tangential component

of the total electric field at the surface Bc has to be zero we

have that UZ x (Esc + _Ein) = O and we can rewrite (16) as

This expression allows us to calculate by what amount

the eigenmode in the interconnection BI, I k excited due to

interaction of the incident field with the component part Bc. It

is noted that only the xy-components of Ein come in between

for the considered planar structures. As mentioned earlier we

had to assume that the nonmodal part of the scattered field at

the port planes SB,1 and SB,2 was negligible. This assumption

however can be dropped as is shown in Appendix B. It is

shown that if the port planes are taken further down the

interconnection lines the excited modes in those lines have

two different origins. The first contribution is given by (17)

and the second contribution comes from the interaction of the

incident field with the modal currents of the interconnection

lines. This last contribution corresponds with the situation of
Fig. 2. In fact, Appendix B proves that it is allowed to separate

the interaction with the component part from the interaction

with the interconnection lines. Let us return to the situation of

Fig. 1 and assume that our incident field is the field generated

by Ac. In the previous derivation it is then assumed that the

structure A is located outside the surface Z. At the same

time the scattered field has to be negligible at this surface.

These two assumptions will be compatible if the effect of the

presence of circuit 1? is negligible on the working of circuit

A when circuit B is not excited at his interconnections.

As a last step we have to translate the excitation coefficient

K~,t to the sources V~,l and lB,l. Using the transmission line
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=

Fig. 7. Geome~ of a microstrip substrate.

equivalent defined in [2] it is easy to show that these sources

are given by

VB,J = 2( Im)B,1)-%j,l

lB,I = &B, IK$,l. (18)

These two sources generate a mode in the transmission line

Br,l with excitation coefficient K~,l propagating away from

13c. If the ‘b’-field in the Lorentz reciprocity theorem is the

field generated by a normalized mode incident on Bc along

BI,2 then we can determine VB,Z and IB,2.

V. GENERAL THREE-DIMENSIONAL STRUCTURES

Up to now we concentrated on planar perfectly conducting

metalization structures. In this section we will generalize’

the previous results to general three-dimensional (3-D), not

necessary perfectly conducting, objects embedded in layered

media. This allows the incorporation of finite conductivity and

finite thickness which is important for MCM’s. In this way h

is in principle possible to apply the theory also to dielectric

waveguide circuits.

Consider the structure of Fig. 6 which is a 3-D gener-

alization of the structure on Fig. 1. The interconnections

A1,I, A1,2, B1,l and BI,2 are now general open waveguides,

which have been studied in for example [7], [8], The compo-

nent parts Ac and 13c are arbitrarily shaped 3-D structures

connecting the interconnections. The same assumptions are

made concerning the modal character of the interconnections

as in the planar case. Remark that AI,l, AI,Z, AC, B~,l, BI,2,

and Bc indicate the external surface of the structures A and B.

First, we concentrate again on the transmitter problem. The

transmission line description remains the same as in the planar

case, i.e., ( l)–(3) remain valid [1]. Let 13!) and ~~) denote

the electric and magnetic fields in the component part of the

structure A when it is excited by a normalized mode along

AI,;. In fact we only need the equivalent electric and magnetic

current densities J$) = u x H$) and K!) = J!?$) x u. on

the surface Ac. These have to follow from an electromagnetic

analysis of the structure A. To determine the fields generated

by J!) and K$) we have to generalize (5) to a coupled field

mixed-potential formalism [9], [10]

E(’) (r) = //{ [G~(rlr’) - VVG@(rlr’)] ~Jf)(r’)

AC

1-*[Vx GF(rlr’)] . K~)(T-’) W’

H(O (r) =

m
[GF(rlr’) - VVG4(rlr’)] . Kf)(r’)

AC

}

- &[V x G~(r-[r’)] . J!)(T’) dS’ (19)

with

GA = GA,ttItt + vtGA,t.% i- %vtGA,.t + GA,..u.u.

GF = GF,ttItt + vtGF,tzu= + uzVtGF,zt + GF,ZZUZUZ

(20)

where GA,tt, G’A,t.,GA,.t, GA,.., GF,tt, GF,t.,G’F,.t, GF,~~,

G4, and G@ are scalar Green’s functions for the magnetic

vector potential, respectively, the electric vector potential,

the electric scalar potential and the magnetic scalar potential.

Again all these Green’s functions only depend on p, z and

z’ and hence we can proceed as in (6)–( 11). However the

component part AC is now described by two sets of surface

wave radiation patterns ~$) (p) and g$) (p)

f:) =
//

exp(j&u . L3r).7$) (r’) dS’

AC

9$) =

//
exp(j~Vu. Ar) K!) (r’) dS’. (21)

AC
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.... . ..
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t

....

..

...

Fig. 8. Geometry of the metahzatlon of two square patches,

Also for the observation or receiver problem we can proceed

as in Section IV. By carefully applying Lorentz reciprocity

theorem as is done for the 2-D case in [2] it is possible to

show that (17) has to be generalized to

It has to be emphasised that (E’n. Ifin) is the incident field

generated by structure A in the layered medium without the

presence of structure B.

VI. APPLICATION

Now we will apply the technique of Section III and Section

IV to the dominant surface wave of a microstrip substrate. Fig.

7 shows the geometry of the substrate consisting of two layers

above a perfectly conducting plate, The bottom layer has a

thickness h and permittivity c1 and the top layer has infinite

thickness and permittivity C2. Both layers are nonmagnetic,

i.e., Ml = ,LLZ= ,uO. The spectral scalar Green’s functions

G~,tt (A) and G@(A) for z = z’ = h are easily determined

and given by

G4,tt(A) =
Z~Z~sh(rJz)

Z{sh(rzh) + Zfch(rzh)

Gd(.A) = ‘hf22h)[
Zjz;sh(rzh)

zjsh(r~h) + z~ch(rzh)

Z:z;sh(rah)
+

Z;sh(rzh) + z;ch(r~h) 1 (23)

with

with i = 1, 2. The propagation coefficient Al of the dominant

surface wave mode, which is a TM-mode, is solution of

Zjsh(rzh) + Z{ch(rzh) = o (25)

I

Radiation pattern lfl(q).utl(Amm)

90°

15 0

180° 0°

21 0°

270°

Fig. 9, Surface wave radlatlon pattern IUt .$1 ( @)] of the current distribution
on the left patch of Fig, 8.

The residue G@,l of G@(A) for this surface wave is

As an example we consider the configuration of Fig. 8

at a frequency of 3 GHz. The substrate has the following

characteristics: h = 3.17 mm, Cr,l = 11.7 and CT,2 = 1.

The metalization pattern consists of two square patches with

dimensions 9.12 mm x 9.12 mm, separated by a horizontal

distance LH and a vertical distance L1. Both the patches are

exited by a micro strip line with width d = 3,04 mm, The port

of each patch is taken 3.04 mm down the microstrip lines. The

characteristic impedance ZCha, = 48.04 Q and the propagation
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coefficient @ = 2,9151ko of the fundamental mode of the

microstrip lines were calculated with a classical 2-D spec-

tral domain moment method analysis. With a commercially

available electromagnetic simulator for planar structures (HP-

Momentum from HP EEsof) the current distribution on one

patch was determined when excited at its port. The SAA-

parameter obtained by this simulator is given by SAA =

0.255 + 0.959j. At 3 GHz the propagation coefficient of the

sole surface wave above cut-off is given by Al = 1.02226ko

and the corresponding residue G@,l oil) = 14075j. Fig. 9

shows the radiation pattern 1~1(~) . ~ I corresponding to the

current distribution of the patch. Note that for the given

frequency this is almost a perfect dipole radiation pattern. Fig.

10 shows the modulus of the SAB -parameter, calculated with

the theory described in previous sections as a function of the

horizontal distance LH when Lv = O. The dots on the figure

are results obtained from an electromagnetic simulation of the

total 2-port structure consisting of patch A and patch B. A

good agreement is found between both results and as expected

this agreement becomes even better for larger distances when

the surface wave becomes more dominant. Also the phase of

SAB (not shown on the figure) is in good agreement. In Fig.

11 results are presented when Lv = 0.2 m. Fig. 12 shows

an equivalent circuit for the whole structure of Fig. 8. The

impedance Z is given by

2(1 + SAA)

z = &(l – SAA)
(27)

and the sources VB and IB depend on the currents iA and

are given by

VB = ~z ~:::~A) 2A

m

SAB
IB =

1 – SAA
%A (28)

VA and 1A follow from symmetry.

VII. CONCLUSION

The interaction between structures embedded in layered

media was investigated. It was shown that each component

can be represented by a surface wave radiation pattern, On

the other hand the influence on a component of an incoming

electromagnetic field was investigated by means of the Lorentz

reciprocity theorem. This influence was represented by voltage

and current sources at the ports of the circuit model of the

component.

APPENDIX A

For notational simplicity we assumed in the main text

that the interconnections were monomodal. In this appendix
the equations are generalized to multimodal interconnections

which propagate more than one mode. Important examples

of multimode interconnections are coupled microstrip lines

and coupled coplanar waveguides. In the circuit model these

multimodal interconnections are represented by coupled trans-

mission lines [1].

IsABl 0.018

0.016
— Surfacewave coupling

0.012

0.01

0.008

0.006

0!004

0- 7-!31 t,,, ,,,, c,,, ,,rt ,s,, ,,,, 8,,,,,,1! ,(, T

0 0:5 i 1:5 2 2:5 3 3:5 4 4:5

LH(m)

Fig. 10. ISAB I as a function of the horizontal distance LH between the
patches of Fig. 8 when Lt~ = O. The full line is obtained with the theory

of thk paper and the dots are results from an electromagnetic simulation of

the global structure.

‘SAB’=FF
0.012 ‘

I I

0.01 -

0.008

0.006

0.004

0.002- ~ \

o
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

LH(m)

Fig. 11, ISAB I as a function of the horizontal distance LH between the

patches of Fig. 8 when LV = 0.2 m. The full line is obtained with the theory
of thk paper and the dots are results from an electromagnetic simulation of

the global structure.

If the interconnection A1,i propagates ~A,~ modes then the

voltages and currents on the corresponding set of coupled

transmission lines are written as

~A,t = 2(12, A,i)-’ ‘xd-~f&s)@p

+ 2(&A,~) ‘1 f=dj/&s)Ki,i

iA,i = &,A,i ‘xp(–jEA,a~)~~,z

– &A,i ‘xp(~PA ~s)~ij. (29)

This k the generalization of (l). ~A,; and ~A,~ are COh.tmn

matrices with ~A,, elements, &j is a column matrix with

the NA,; excitation coefficients of the modes, ~m,A,i is a
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Fig. 12. Equivalent circuit for the structure of Fig. 8.

Bc

(a)

ds

,0

(b)

Fig. 13. Close-up of the interconnection Br, ~ to
bility between interaction with the component part
interconnection part.

demonstrate the separa-

and interaction with the

Na4,Z x N~,, matrix with the longitudinal currents on each

line for each mode [1] and ~~ , is a diagonal matrix with the

propagation coefficients of the ‘different modes. The inversion

of (29) at s = O becomes

K;)t = + [Im,A,zQ<4,* (s= 0)+ 2(lm,.4,,)-’iA,t(s = 0)1
.(30)

If the structure A is excited by normalized modes along for

example .41,1, then we get the following current densities on
the structure A

J(l) = eXP(jPA ~S)(–J,,A,lUs + Jtr,.4,1Utr)—/4,1

+ SA,ll =P(-~& S)(Jg, A, IILS + ~tr,.4,1”tr )

on AI,l

J7~ = & 19 exp(j/~ s)(Js, A,214s + &,,4.2”tr.“ —.4,2
) on AI,2

J:)
on .4c

(31)

where &, ~~ is a N.4,, x N.a,, submatrix of S~, describing

the reflections and cross-reflections of the N~,l modes at the

‘!t!i!!=
component part AC. The remaining part of the transmitter

problem is easily generalized to multimodal interconnections.

We just want to mention the generalization of (11)

where ~$ ) is a column matrix with N, elements represent-

ing the surface wave radiation patterns of surface wave v

generated by each of the modes at all the interconnections.
The receiver problem equations ( 12)–( 14) are easily gen-

eralized as in (31). Finally (17) and (1 g) are generalized

as

and

G,l =2(GB,1)-UQ,l

L3,1 =L,lda,l.

APPENDIX B

(34)

In this Appendix we will show that it is allowed to sep-

arate the interaction of an externally incident field with the

interconnection lines from the interaction with the component

part. Let us concentrate on the close-up on Fig. 13(a) of the

interconnection BI, 1 and the component part Bc. In stead of

taking the port at SE, 1, i.e., s = O, we now take the port

further down the line at S~ ~, i.e., s = A. In this way the

component part increases by an amount ABC. The currents

Jb of the ‘b’- field on ABC are modal and take the following

form (see also (4)):

Jb ==Jg~l = exp(j~B,l!5)(–Js,~)l~s + .~tr,~,l%r)

+ SB, II exp(–.jP~,ls) (J~,~,lu$ + Jtr,B,lutr)

on ABc. (35)

If we now proceed as in (17) we get the following result

for the excitation coefficient K&~l at the port plane S~,l

[exp(jflB.ls)(-~s, B,lUs + Jt,,B,Iut.)] dS
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We can rewrite this as

d
A

Kj$l=K;+l+ Kj,l(s) eXp(j/?J3,1s) ds
o

/

A
+ SE,ll K~)l(s) exp(–~@B,ls) ds (37)

o

where we used (17) for the first term on the right-hand

side of (36). In the two other terms on the right-hand side

we separated the longitudinal integration in the s-direction

from the transverse integration. The transverse integration

is incorporated in the definition of the distributed excitation

coefficients K:, ~(s) ds and K~,l (s) ds

/
Kjjl(s) ds = ~ E: . (– J.q,~,Ius + Js,~,trutr) dc ds

c

K;l(s)ds=~
/

u + ~@,@~r) de ds-@ “ (JS,EI,l s
c

(38)

where c is a transversal integration line on Al?c. The last

two terms in (37) are represented in the circuit-model as

distributed sources V~,l (s) ds and lB,l (s) ds in the trans-

mission line BI, 1 with the theory of [2]. Remark that the

longitudinal integrals of the excitation coefficients K~,l (s) ds

and K; ~(s) ds with the phase factors exp(~p~, 1S) and

exp( ‘~~B, Is) correspond to the coefficients P and Q defined

in [2]. The first term on the other hand is represented by

the discrete sources V~,l and lB,l given in (18). Hence, the

excitation coefficient K~~l can be interpreted to consists of

three parts indicated by the arrows on Fig. 13b. The first part

is directly generated by the discrete source at s = O or in

other words by the interaction of the incident field with the

component part Bc. The second and third part are generated

by the distributed sources or in other words by interaction of

the incident field with the interconnection line. The second

part is a direct wave and the third part an indirect wave which

partly reflects at the component part, i.e., at s = O.
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